Polynomials whose Galois groups are Frobenius groups with prime order complement
نویسندگان
چکیده
منابع مشابه
Galois groups of prime degree polynomials with nonreal roots
In the process of computing the Galois group of a prime degree polynomial f(x) over Q we suggest a preliminary checking for the existence of non-real roots. If f(x) has non-real roots, then combining a 1871 result of Jordan and the classification of transitive groups of prime degree which follows from CFSG we get that the Galois group of f(x) contains Ap or is one of a short list. Let f(x) ∈ Q[...
متن کاملClassification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
متن کاملFinite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
متن کاملGroups of Prime Power Order as Frobenius-wielandt Complements
It is known that the Sylow subgroups of a Frobenius complement are cyclic or generalized quaternion. In this paper it is shown that there are no restrictions at all on the structure of the Sylow subgroups of the FrobeniusWielandt complements that appear in the well-known Wielandt's generalization of Frobenius' Theorem. Some examples of explicit constructions are also given. 0. Introduction Let ...
متن کاملComputing Galois Groups with Generic Resolvent Polynomials
Given an arbitrary irreducible polynomial f with rational coefficients it is difficult to determine the Galois group of the splitting field of that polynomial. When the roots of f are easy to calculate, there are a number of “tricks” that can be employed to calculate this Galois group. If the roots of f are solvable by radicals, for example, it is often easy to calculate by hand the Q-fixing au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 1994
ISSN: 1246-7405
DOI: 10.5802/jtnb.121